
Towards user-friendly quantum computing algorithms
with the Qiwi library

qiwi

Quantum computing is the emergent computa-
tional power that we need to adress the challenges
of the 21st century. As it is based on principles from
quantummechanics, it also carrieswith it a complete
change in our way of designing new algorithms. Al-
though for themoment quantum computers are still
experimental and not ready for mass production
yet, we have reached the point where quantum al-
gorithms need to be developped forward, and in-
tegrated into a dedicated, hardware-agnostic, soft-
ware framework.

IBM, a pioneer in quantum computing, has de-
velopped Q�����, a set of software components that
allowanyone to easily program IBM’s quantumcom-
puters from anywhere in the world thanks to its
cloud architecture. Q����� components are con-
cernedwith the low-level intricacies of quantum cir-
cuits, transpilation (the quantum analogue of com-
pilation), as well as quantum emulation (how to em-
ulate the behavior of a quantum computer on clas-
sical hardware).

Figure 1: An example of a quantumcircuit, rendered
with the help of a Q����� drawer.

Only the highest-level Q����� module, named
T����, proposes to its users a few basic quantum
algorithms. However, at QuantFi we observed that
all existing quantum algorithms can be constructed
by applyingmeta-algorithms (such as amplitude am-
pli�cation or phase estimation) on a few building
blocks. In Qiskit (and similar libraries) these build-
ing blocks are not coded as gates in their optimal
versions, and the meta-algorithms are just absent.
We decided to implement them in a �exible and

modular manner, and hope that by extending this
abstraction level, Qiwi will also be able to deal with
compilation strategies, quantum resource estima-
tions, and error correcting codes. The latter are
an harder example of meta-algorithms as they in-
volve measurement strategies. To allow quantum
algorithms working with them, we will need more
than ever, a �exible and modular implementation
of them.

At QuantFi, we are faced with client use cases
that span the whole �nancial technology spectrum,
fromoptionpricing tomachine learning. AsQuantFi
positions itself as a key provider of quantum soft-
ware for Finance, we need to be able to quickly de-
liver prototypes that propose a quantum solution to
these classical use cases. For instance, when faced
with the challenge of harnessing the power of quan-
tummachine learning for credit scoring, one need to
use QRAM (a quantum algorithm that loads classical
data into a quantum computer), create Gibbs states,
and make use of quantum linear algebra. We found
that neither Q����� T���� nor other quantum com-
puting libraries ful�lls our needs since they focus
more on low-level structures than the higher-level
ones needed for designing quantum algorithms, or
that they are restricted to a particular domain.

This is the reason why QuantFi decided to invest
into the development of Q���, a complete, modular,
interdisciplinary, state-of-the-art Python library that
can be seen as an important drop-in replacement
for Q����� T����, with many high-level quantum al-
gorithms ready to be used by engineers and scien-
tists thatwork in the quantumecosystemaround the
world, far beyond Finance. Q��� is based on the low-
level components of Q�����: mainly the quantum
circuits machinery and the various backends avail-
able. In Q���, quantum algorithms are expressed as
gates, making thewhole library very expressive and
close to how researchers design their own quantum
algorithms. Q���main modules are:

• The Core module contains fundamental gates
and algorithms such as quantum boolean or-
acles, unary and binary encodings (including

1



QRAM), amplitude ampli�cation and estima-
tion (in which any quantum algorithm can be
plugged-in, once represented as a gate itself),

• The Optimization module contains not only
VQE and QAOA but also mixed binary optimiz-
ers (MBO), and quantum second-order cone
programming (SCOP) for replacing linear and
quadratic programming,

• The LinearAlgebra module contains the lat-
est HHL algorithm for solving linear systems
on a quantum computer, together with hybrid
algorithms that are designed for the near term.

Other modules include time evolution (including
Hamiltonian simulation), machine learning (OLS,
SVM) and various circuit simulators, including a
symbolic one for debugging parametrized quantum
circuits more easily.

qiwi Core

OptimizationTime
Evolution

Linear
Algebra

Machine
Learning

Circuit
Simulators

Figure 2: An overview of the di�erentmodules com-
posing Qiwi.

Last but not least, Q��� is fully tested and docuc-
mented, making it attractive and user-friendly. In
the long-term, Q��� will support its own quantum
emulator based on OpenCL, and will be fully hard-
ware agnostic (both classical and quantum). We
also seek to include compilation strategies, ancillary
qubits processing and gate counting to estimate and
optimize the resources required by quantum algo-
rithms. QuantFi plans to release Q��� with an open
source license in order to make it available for the
whole quantum computing community. Stay tuned
for our �rst release!

2


